Comparison of high pm10 concentration between Łódź and smaller municipalities of Central Poland in 2012–2023 in the light of meteorological conditions

Autor

  • Joanna Jędruszkiewicz University of Lodz, Faculty of Geographical Sciences, Institute of Climatology and Hydrology

DOI:

https://doi.org/10.26485/AGL/2024/117/3

Słowa kluczowe:

air pollution, Łódź voivodeship, Central Poland, meteorological conditions, PM10

Abstrakt

Long-term human exposure to particulate matter with a size equal to or less than 10 micrometers may lead to serious health problems such as respiratory and cardiovascular diseases or cancer. Whereas in most of Europe the number of premature deaths decreased significantly over more than a decade, in Poland, it remained at the same level. In Central Poland, as in the rest of the country, the main reason for high PM10 concentrations is low-level emission from single-family houses, which are often poorly insulated and heated by old furnaces with low-quality fuels or substitutes (i.e., wastes). The high concentration of PM10 in winter is exaggerated by meteorological conditions that usually do not favour the dispersion of pollutants. High and very high PM10 concentrations occurred during anticyclonic weather, when high pressure, limited turbulence, subsidence of the air, low wind speed and lack of precipitation hindered air pollution removal. The highest probability of high PM10 concentration episodes is for the air mass inflow from the eastern (NE–E) and southern (SW–S) sectors when the anticyclone center is located in the north-east or south-east of Poland. Additionally, decreasing temperatures in winter increase the demand for heating and coal combustion. In Central Poland, from 2012 to 2023, the air quality significantly improved. Since 2019, the annual PM10 standards have been met at all stations, and the 24-hour limits are exceeded in only some of them. The most polluted urban areas in Central Poland are Opoczno, Radomsko, Zduńska Wola, Piotrków Trybunalski and Łódź, and the level of pollution is not related to the number of citizens. In many cases, considerably less-populated cities such as Opoczno, Zduńska Wola or Radomsko are more polluted than Łódź.

Bibliografia

Czernecki B., Półrolniczak M., Kolendowicz L., Marosz M., Kendzierski S., Pilguj N. 2017. Influence of the Atmospheric Conditions on PM10 Concentrations in Poznań, Poland. Journal of Atmospheric Chemistry 74(1): 115-39. DOI: 10.1007/s10874-016-9345-5

EC (European Commission). 2021. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Pathway to a Healthy Planet for All EU Action Plan: Towards Zero Pollution for Air, Water and Soil. Online: http://eur-lex.europa.eu/LexUriServ/ LexUriServ.do?uri=CELEX:52012DC0673: EN:NOT (last access: 13.01.2024).

ECOVidi. 2023. Projekt założeń do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe dla gminy Opoczno – aktualizacja na lata 2023–2026 z perspektywą do 2038. Online: https://konsultacje.um.opoczno.pl/pr int/node/70?entity_type=node (last access: 13.01.2024).

EEA (European Environment Agency). 2020. Online: https://www.eea.europa.eu/publications/air-quality-in-europe-2022/sources-and- emissions-of-air (last access: 3.01.2024).

EEA (European Environment Agency). 2023. Online: https://www.eea.europa.eu/en/newsroom/editorial/europes-air-is-getting-cleaner?activeAccordion=fd9f4a7e-09b0-44d6-bb8e-6a77b3fd0efd (last access on 3.01.2024).

EU (European Union). 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Online: https://eur-lex.europa.eu/eli/dir/2008 /50/oj (last access: 13.01.2024).

Geoportal (Spatial Information Infrastructure). 2023. Online: https://mapy.geoportal.gov.pl (last access: 30.11.2023)

GIOŚ (Chief Inspectorate for Environmental Protection). 2024. Online: https://powietrze.gios. gov.pl/ (last access: 16.01. 2024).

GIOŚ (Chief Inspectorate for Environmental Protection). 2023. Online: www.gios.gov.pl (last access: 5.01.2024).

GUS (Statistics Poland). 2023. Online: https:// bdl.stat.gov.pl/ (last access on 4.01.2024).

Guerreiro C., Leeuw F., Foltescu V., Horálek J. 2014. Air Quality in Europe – 2014 Report. EEA.

Guerreiro C., Ortiz A.G., Leeuw F., Viana M., Horálek J. 2016. Air Quality in Europe – 2016 Report. EEA.

IMWM-NRI (Institute of Meteorology and Water Management, National Research Institute). 2024. Online: https://danepubliczne.imgw.pl/ data/dane_pomiarowo_obserwacyjne/dane_ hydrologiczne (last access on 14.01.2024).

IQAir. 2023. Online: https://www.iqair.com/ world-most-polluted-cities?continent=59af92ac3e70001c1bd78e52&country=&state=& sort=-rank&page=1&perPage=50&cities= (last access: 3.01.2024).

Jenkinson A.F., Collison F.P. 1977. An initial climatology of gales over the North Sea. Synoptic Climatology Branch Memorandum 62. Meteorological Office, Bracknell.

Jędruszkiewicz J., Czernecki B., Marosz M. 2017. The Variability of PM10 and PM2.5 concentrations in selected Polish agglomerations: the role of meteorological conditions, 2006–2016. International Journal of Environmental Health Research 27(6): 441-462.

Kowalska F. 2020. Zanieczyszczenie Powietrza Istotnym Zagrożeniem Dla Zdrowia Mieszkańców Polskich Miast.” Refleksje. Pismo Naukowe Studentów i Doktorantów. Wydział Nauk Politycznych i Dziennikarstwa Uniwersytetu im. Adama Mickiewicza w Poznaniu (21): 71-84. DOI: 10.14746/r.2020.1.6

Leśniok M., Małarzewski Ł., Niedźwiedź T. 2010. Classification of Circulation Types for Southern Poland with an Application to Air Pollution Concentration in Upper Silesia. Physics and Chemistry of the Earth 35(9–12): 516-22. DOI: 10.1016/j.pce.2009.11.006

Loveair. 2023. Online: https://loveair.pl/smog/najbardziej-zanieczyszczone-miasta-polski-i-europy (last access: 3.01.2024).

NIK (Supreme Audit Office). 2022. Online: https://www.nik.gov.pl/en/news/clean-air-a-big-programme-with-small-effects.html (last access: 3.01.2024).

Ortiz G.A., Guerreiro C., Soares J. 2020. Air Quality in Europe: 2020 Report. EEA.

PAS (Polish Smog Alert). 2019 Online: https://polskialarmsmogowy.pl/2019/10/smo gowi-liderzy-ranking-polskich-miast-z-najbardziej-zanieczyszczonym-powietrzem/ (last access: 3.01.2024).

PAS (Polish Smog Alert). 2023. Online: https://polskialarmsmogowy.pl/2023/11/smo gowy-ranking-pas-walka-ze-smogiem-zaczy na-przynosic-efekty/ (last access: 3.01.2024).

Pilguj N., Kendzierski S., Kolendowicz L. 2018. The Role of the Atmospheric Circulation Types on PM10 Concentrations in Poznań. Przeglad Geograficzny 90(1): 77-91. DOI: 10.7163/PrzG.2018.1.4

Piotrowski P. 2009. Obiektywna metoda klasyfikacji cyrkulacji atmosferycznej dla Polski, Acta Universitatis Lodziensis – Folia Geographica Physica 10.

Porwisiak P., Werner M., Kryza M., Vieno M., Holland M., ApSimon H., Drzeniecka-Osiadacz A., Skotak K., Gawuc L., Szymankiewicz K. 2023.

Modelling Benzo(a)Pyrene Concentrations for Different Meteorological Conditions – Analysis of Lung Cancer Cases and Associated Economic Costs. Environment International 173. DOI: 10.1016/j.envint.2023.107863

PwC. 2018. Walka o Lepsze Powietrze. Raport. Online: https://www.pwc.pl/pl/publikacje/ 2018/walka-o-lepsze-powietrze-raport.html (last access: 13.01.2024).

Rawicki K., Czarnecka M., Nidzgorska-Lencewicz J. 2018. Regions of pollution with particulate matter in Poland. E3S Web of Conferences 28: 01025. DOI: 10.1051/e3sconf/20182801025

Reizer M., Juda-Rezler K. 2016. Explaining the High PM10 Concentrations Observed in Polish Urban Areas. Air Quality. Atmosphere and Health 9(5): 517-531. DOI: 10.1007/s11869-015-0358-z

Wachowiec A., Olczyk B., Krzemińska M. 2019. Roczna ocena jakości powietrza w województwie łódzkim. Raport wojewódzki za rok 2018. Główny Inspektorat Ochrony Środowiska, Łódź.

WHO (World Health Organisation). 2021. WHO Global Air Quality Guidelines: Particulate Mat-ter (‎PM2.5 and PM10)‎, Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Geneva. World Health Organization.

Widziewicz K., Rogula-Kozłowska W., Loska K., Kociszewska K., Majewski G. 2018. Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland. Biomedical and Environmental Sciences 31(1): 23-36.

Wielgosiński G., Czerwińska J. 2020. Smog Episodes in Poland. Atmosphere 11(3): 277. DOI:10.3390/atmos11030277

Wierzbińska M., Kozak J., Zając E. 2023. Zmienność stężeń pyłu zawieszonego PM10 w powietrzu na terenie Krościenka nad Dunajcem w latach 2018–2022. Polish Journal of Materials and Environmental Engineering 5(25): 14-22. DOI: 10.53052/pjmee.2023.5.02

Wierzbińska M., Kita A. 2024. The Impact of Air Pollution on the Number of Diagnosed Respiratory and Cardiovascular Diseases. Journal of Ecological Engineering 25(2): 167-175. DOI: 10.12911/22998993/176249

Zgłobicki W., Baran-Zgłobicka B. 2024. Air Pollution in Major Polish Cities in the Period 2005–2021: Intensity, Effects and Attempts to Reduce It. Environmental Research 240: 117497. DOI: 10.1016/j.envres.2023.117497

Pobrania

Opublikowane

2024-11-15

Jak cytować

Jędruszkiewicz , J. (2024). Comparison of high pm10 concentration between Łódź and smaller municipalities of Central Poland in 2012–2023 in the light of meteorological conditions. Acta Geographica Lodziensia, 117, 33–52. https://doi.org/10.26485/AGL/2024/117/3

Numer

Dział

Artykuły