The use of satellite measurements (Sentinel 3) in the characteristics of the surface urban heat island in Łódź
DOI:
https://doi.org/10.26485/AGL/2024/117/8Keywords:
urban climate, surface urban heat island, land cover, satellite teledetectionAbstract
The study presents the results of the assessment of the surface urban heat island in Łódź based on satellite detection using the Sentinel 3 satellite. To achieve the objectives of the work, 30 selected satellite images of surface temperature from 2021–2022 were used. The study of the average urban heat island, its maximum value and spatial distribution was carried out separately for the summer (April–September) and winter (January–March) periods. The results showed that the median SUHI value was 2.6°C in the summer and 1.9°C in the winter months.
References
ArcMap. 2024. Online: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources (data ostatniego dostępu: 05.09.2024).
CCI (Climate Change Initiative). 2024. Online: https://maps.elie.ucl.ac.be/CCI/viewer/ (data ostatniego dostępu: 05.09.2024).
Copernicus. 2024. Online: https://www.copernicus.eu/pl (data dostępu: 05.09.2024).
EPA (Environmental Protection Agency). 2017. Heat Island effect. Online: https://19january2017snapshot.epa.gov/heat-islands/heat-island-impacts_.html (data ostatniego dostępu: 26.01.2024)
Fabrizi R., Bonafoni S., Biondi R. 2010. Satellite and ground-based sensors for the urban heat island analysis in the city of Rome. Remote Sensing 2: 1400-1415.
DOI:10.3390/rs2051400
Fortuniak K. 2003. Miejska Wyspa Ciepła. Podstawy energetyczne, studia eksperymentalne, modele numeryczne i statystyczne. Wyd. Uniwersytetu Łódzkiego.
Fujibe F. 2011. Urban warming in Japanese cities and its relation to climate change monitoring. International Journal of Climatology 31: 162-173.
DOI: 10.1002/joc.2142
Gedzelman S.D., Austin S., Cermak R., Stefano N., Partridge S., Quesenberry S., Robinson D.A. 2003. Mesoscale aspects of the Urban Heat Island around New York City. Theoretical and Applied Climatology 75: 29-42. DOI: 10.1007/s00704-002-0724-2
Giridharan R., Kolokotroni M. 2009. Urban heat island characteristics in London during winter. Solar Energy 83: 1668-1682.
Gawuć L. 2014. Dobowa zmienność powierzchniowej miejskiej wyspy ciepła wybranych miast w Polsce podczas fali upałów w sierpniu 2013 roku na podstawie danych satelitarnych. Prace Naukowe Politechniki Warszawskiej. Inżynieria Środowiska 68: 19-34.
Gawuć L., Strużewska J. 2016. Impact of MODIS quality control on temporally aggregated urban surface temperature and long-term surface urban heat island intensity. Remote Sensing 8: 374.
DOI:10.3390/rs8050374
Gawuć L., Łobocki L., Strużewska J. 2022. Application of the profile method for the estimation of urban sensible heat flux using roadside weather monitoring data and satellite imagery. Urban Climate 42: 101098.
Kaszewski B.M., Siwek K. 1998. Cechy przebiegu dobowego temperatury powietrza w centrum i na peryferiach Lublina. Acta Universitatis Lodziensis – Folia Geographica Physica 3: 213-220.
Kawashima S., Tomoyuki I., Mitsuo M., Tetsuhisa M. 2000. Relations between Surface Temperature and Air Temperature on a Local Scale during Winter Nights. Journal of Applied Meteorology 39: 1570-1579.
Kłysik K. 1998. Charakterystyka powierzchni miejskich w Łodzi z klimatologicznego punktu widzenia. Acta Universitatis Lodziensis – Folia Geographica Physica 3: 173-185.
Kłysik K., Fortuniak K. 1999. Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmospheric Environment 33 (24–25): 3885-3895.
Lai J., Zhan W., Huang F,. Quan J., Hu L., Gao L., Ju W. 2018. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products. ISPRS Journal of Photogrammetry and Remote Sensing 139: 212-227.
Li X., Li W., Middel A., Harlan S., Brazel A., Turner B. 2016. Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment 174: 233-243.
Liu L., Zhang Y. 2011. Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sensing 3: 1535-1552.
Majkowska A., Kolendowicz L., Półrolniczak M., Hauke J., Czernecki B. 2017. The urban heat island in the city of Poznań as derived from Landsat 5 TM. Theoretical and Applied Climatology 128: 769-783. DOI: 10.1007/s00704-016-1737-6
Oke T.R. 1973. City size and the urban heat island. Atmospheric Environment 7: 769-779.
Polehampton E., Cox C., Smith D., Ghent M. 2023. Copernicus Sentinel 3 SLSTR Land User Handbook. Online: https://sentinel.esa.int/web/sentinel/technical guides/sentinel 3 slstr (data ostatniego dostępu: 2024.02.06)
Pu R., Gong P., Michishita R., Sasagawa T. 2006. Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sensing and Environment 104: 211-225.
Renc A., Łupikasza E. 2024. Changes in the Surface urban heat island between 1986 and 2021 in the polycentric Górnośląsko-Zagłebiowska Metropolis, southern Poland. Building and Environment 247: 110997.
Renc A., Łupikasza E., Błaszczak M. 2022. Spatial structure of the surface heat and cold islands in summerbased on Landsat8 imagery in southern Poland. Ecological Indicators 142: 109181.
Sentinel. 2024. Online: https://sentinel.esa.int /web/sentinel/technical-guides/sentinel-3-slstr/level-2/land-surface-temperature-lst (data ostatniego dostępu: 05.09.2024).
SNAP. 2024. Online: https://step.esa.int/main/download/snap-download/ (data ostatniego dostępu: 05.09.2024).
Sobrino J.A., Irakulis I. 2020. A methodology for comparing the surface urban heat island in selected Urban aglomerations around the world from Sentinel-3 SLSTR data. Remote Sensing 12: 2052.
Statystyka Łodzi. 2022. Urząd statystyczny w Łodzi. Online: lodz.stat.gov.pl (data ostatniego dostępu: 2024.02.06)
Steeneveld G.J., Koopmans S., Heusinkveld B.G., van Hove L.W.A., Holtslag A.A.M. 2011. Quantifying urban heat island effects and human comfort or cities of variable size and urban morphology in the Netherlands. Journal of Geophysical Research 116: D20129. DOI:10.1029/ 2011JD015988
Streutker D.R. 2002. A remote sensing study of the urban heat island of Houston, Texas. International Journal of Remote Sensing 23(13): 2595-2608.
Szymanowski M. 2004. Miejska wyspa ciepła we Wrocławiu. Acta Universitatis Wratislaviensis. Studia Geograficzne 77.
Sun Y.J., Wang J.F., Zhang R.H., Gillies R.R., Xue Y., Bo Y.C. 2005. Air temperature retrieval from remote sensing data based on thermodynamics. Theoretical and Applied Climatology 80: 37-34.
Theeuwes N.E., Steeneveld G.J., Ronda R.J., Holtslag A.A. 2017. A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe. International Journal of Climatology 37: 443-454. DOI: 10.1002/joc.4717
Wawer J. 1997. Miejska wyspa ciepła w Warszawie. Prace i Studia Geograficzne 20: 105-197.
Weng Q. 2012. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment 117: 34-49.
World Urbanization Prospects: The 2018 Revision. 2019. United Nations, Department of Economic and Social Affairs, Population Division. New York, United Nations.
Yang Q., Huang A., Tang Q. 2019. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Science of the Total Environment 655: 652-662.
Zhou D., Zhao S., Liu S., Zhang L., Zhu C. 2014. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment 152: 51-56.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Łódzkie Towarzystwo Naukowe
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.