OGÓLNA TEORIA WZGLĘDNOŚCI Z NIEZEROWĄ STAŁĄ KOSMOLOGICZNĄ JAKO TEORIĄ CECHOWANIA
Słowa kluczowe:
całka działania, główna wiązka włóknista, koneksja w głównej wiązce włóknistej, formy krzywizny i skręcenia koneksji, grupy Lie i ich algebryAbstrakt
W pracy pokazano, że klasyczna ogólna teoria względności Einsteina (OTW) z niezerową stałą kosmologiczną może być uważana za teorię cechowania z grupą Lorentza, jako grupą struktury. Pokazano mianowicie, wykorzystując teorię Ehresmanna koneksji na wiązce głównej, że standardowa całka działania dla OTW da się zapisać w postaci kwadratowej funkcji tzw. krzywizny poprawionej, tj., w postaci typowej całki działania dla pola cechowania. Fakt ten może być ważny dla kwantowania klasycznej OTW ponieważ potrafimy efektywnie kwantować klasyczne pola cechowania
Bibliografia
D. K. Wise, MacDowell-Mansouri Gravuty and Cartan Geometry, CQG, 27 (2010) 155010 (arXiv:gr-qc/0611154v2, 15 May 2009)
D. K. Wise, Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions, arXiv:0904.1738v2 [math.DG], 3 August 2009
A. Randono, Gauge Gravity: a forward-looking introduction, arXiv: 1010.5822v1 [grqc], 27 October 2010
S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. 1 and Vol. 2, Interscience Publishers, a division of John Wiley and Sons, New York, London 1963/1969
F. Gürsey, Introduction to Group Theory an article in Groups and Topology in Relativity, C. DeWitt and B. DeWitt (editors), Gordon and Breach, London 1964
A. Dubničkova, Topological Groups for Physicists, Dubna 1987 (in Russian)
J. Mozrzymas, Applications of Group Theory in Modern Physics, National Scientific Publishers PWN, Wrocaw 1967 (in Polish)
J. Gancarzewicz, Foundations of Modern Differential Geometry, SCRIPT, Warsaw 2010 (in Polish)
R. Sulanke, P. Wintgen, Differentialgeometrie und Faserbuendel, Copyright by VEB Deutscher Verlag der Wissenschaften, Berlin 1972
W. Kopczyński, A. Trautman, Spacetime and Gravitation, National Scientific Publishers PWN, Warszawa 1984 (in Polish - there exists English translation)
A. Trautman, Einstein-Cartan Theory, Symposia Mathematica 12 (1973) 139
K. Hayashi, T. Shirafuji, Gravity from Poincare Gauge Theory of the Fundamental Particles. Part V an article in Progress of Theoretical Physics 65 (1981) 525
W. Drechsler, M.E. Mayer, Fiber Bundle Techniques in Gauge Theories , an articlein Lectures Notes in Physics 67, Springer-Verlag, Berlin · Heidelberg · New York 1977
R. W. Sharpe, Differential Geometry. Cartan’s Generalization of Klein’s Erlangen Program, Springer-Verlag, New York · Berlin · Heidelberg 2000
J. Kijowski, International Journal of Geometric Methods in Modern Physics 13 (2016) 1640008
M. A. Schweizer, Gauge Theory and Gravitation, PhD, Zurich 1980
M. Dudek, J. Garecki, General Relativity with cosmological constant > 0 as a gauge theory, arXiv: 1703.06024v1 [gr-qc]
L. M. Sokołowski, Foundations of Tensor Analysis, Wydawnictwo Uniwersytetu Warszawskiego 2010 (in Polish).